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THE FAR FIELD OF A ROCKET EXHAUST JET 

AT LOW AND MODERATE ALTITUDES 

F. P. Boynton 

ABSTRACT 

A method is given for predicting the flow field of a rocket exhaust 

plume at distances far removed from the nozzle exit at altitudes where 

afterburning of the exhaust is appreciable. The calculation combines a 

fluid mechanical analysis of turbulent mixing due to Libby with the 

adiabatic flame temperature calculation of Boynton and Neu. The eddy 

viscosity is determined from a consideration of conditions under which 

compressible turbulent flows appear to exhibit self-preserving behavior. 

Instructions are given for preparing input to two computer programs which 

are based on the analysis in this report. In two appendices, it is shown 

how the eddy viscosity constants may be derived from incompressible jet 

flow data and a comparison of the results of the present calculation with 

experimental wind-tunnel rocket exhaust behavior is given. 
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INTRODUCTION 

The flow far downstream from the nozzle exit of a rocket engine is governed 

primarily by viscous (turbulent) and chemical interactions with the surrounding 

atmosphere. The inviscid interactions caused by an initial imbalance between 

nozzle exit and ambient pressures have largely been dissipated in this region, and 

it is therefore appropriate to consider that these mixing and burning phenomena 

occur at relatively constant pressure. A description of this flow is then given by 

solving an initial-value problem for the boundary layer equations. The initial 

conditions are those of the rocket exhaust expanded to ambient pressure. For 

nozzle exit pressures close to ambient, the properties of this equivalent jet are 

given by an isentropic expansion of the exhaust. For nozzle exit pressures much 

1 greater than ambient, the non-isentropic analysis of Thomson may be applied. For 

nozzle exit pressures much less than ambient (which are perhaps of lesser interest) 

the initial properties might be taken as those behind a normal shock at the jet 

exit. 

In the following paragraphs we shall discuss briefly some elementary consider-

ations of the structure of the far field which may be derived from a similarity 

analysis of jet flows in a coordinate system in which the boundary layer equation 

reduces to their incompressible form. We shall then discuss a linearized solution 

obtained by Libby,
2 

and show how this analysis, combined with the considerations 

obtained from the similarity analysis, may be used to treat problems of rocket 

exhaust jets. 
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l. SIMILARITY CONSIDERATIONS 

It is well known that the flow of a turbulent jet of constant-density fluid 

far from the origin is self-preserving: the variation of any mean quantity over 

any plane, x = constant, is expressible non-dimensionally through suitable scales 

of length and velocity, £ and u , as a universal function of y/£ • Analyses of m m m 
the equations of motion for either the case where the jet velocity is much greater 

than that of the ambient medium or the case where the jet and ambient velocities 

differ by a small amount have shown that this behavior is possible, and a large 

number of experiments bear out that it really occurs. 3 However, the existence of 

full self-preservation in a jet flow with large density variations leads to an 

absurd result, that the density varies as a power of the axial distance. While 

this result is possible over a small region of the flow, its continuance violates 

the condition that the density must approach its free-stream value far downstream. 

A transformation of the boundary layer equations exists which allows the 

coordinate system to be stretched or squeezed in such a manner as to eliminate the 

density as a variable. The equations then assume their incompressible form, and it 

is possible for self-preserving profiles to exist in the new coordinate system. The 

transformation is that of Howarth4 
and Dorodnitsyn,5 wherein a new radial coordinate 

is introduced as 

R 

r u I ']~ r dr , (l) 
0 

where p
0 

is a suitably chosen reference value of the density. The boundary layer 

equations in terms of mean flow properties are these (for axially symmetric flow): 
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Continuity: 0 0 
ox (rpu) + or (rpv) = 0 

Momentum: au au oP 1 a { T } pu ..,- + pv ,.---- = - .._-- + - ,.---- r'f ox vr ox r ur xr 

Energy: 
0 2 

pu ~h+~] + 
0 2 

pv ~hi~ l 1 a T T - ,.---- {r(q +u'f )} r ur r xr 

Species continuity: 
oc. 

l 
pu ox + pv 

The transformation (x,r)~(x,R) is performed by noting that 

a a oR a a oR a 
ox = ox + ox oR' or = or oR 

and by requiring the stream function Y to be the same in each flow, 

* y = y. 

By using the relations (3), and also noting that 

whence 

* u 

* v 
r pv oR ---+-U - R p ox ' 

0 

(2) 

(3) 

(4) 

(5) 

(6) 

the following equations are obtained in place of the boundary layer equations: 

Continuity: dU 1 d * <lx + R 6R (Rv ) = 0 

au * au 1 d (R'f T*) Momentum: u-+ v oR = p R M <lx xr 0 

(7) ' 2 * o u
2 

1 0 T* T* Energy: u 0:[h ~ J + v ox-Chy] = P R oR{R(qr + U'f ) } xr 0 

Species continuity: J 
The reader will recognize that these are simply the boundary layer equations for an 
equivalent incompressible flow. The shear forces and flows of heat and matter are 

3 



required to be the same for unit mass in both flows, whence 

T* * T 
R ,- Po dV r ,- p dV 

xr xr 

R T* * T p 
qr Po dV r qr dV 

JT*. * JT . R Po dV r p dV 
r,l r,l 

* where dV and dV are volume elements in the transformed and original coordinate 

systems. 

We now wish to express the set of equations (7) in a self-preserving form. We 

can do this in two limiting cases, just as for incompressible flow. If we let u 
e 

be the velocity of the external stream, and let u
1 

be the difference between the 

local velocity in the jet and the free stream velocity, we may write the momentum 

equation as 

l () (R T*} 
p R oR ,-xr 

0 

(9) 

We can either assume that u
1 

>> u
8 

at every location of interest to us, or that 

ue >> u
1

. These two cases will be investigated separately. 

* Here we choose the self-preserving functions u1 ~ urn f(~), v ~ u C(~) and 
m 

,-xTr = p u 2 g(~), where ~ ~ R/£ . We substitute these relations into equation (9) 
o m m 

and perform a second coordinate transformation, (x,r)~(x,~). The result is 

2 2 
du u d£ u 

um ~ r2 - ~ ~ ~ff 1 
- ~ {! (~g)' - Cfl 

dx £ dx -£ ~ f 
m m 

(10) 

The requirement for self-preservation is that the coefficients of the universal 

functions of ~ be either zero or proportional to each other. This requirement is 

satisfied if £m l ( ) ( )-a - x-x and u ~ x-x
0 

, where a is at most a function of the 
a o m 
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initial conditions and a is not yet determined. The momentum integral conservation 

equation is 

00 00 00 

2rr J 2 
rdr 2p TT J 2 2 i [ 2 Jl1ld1l] 

2 (11) pul u
1 

RdR TTU Po ~ TTr.p.u. 
0 m m J J J 

0 0 0 

which is obtained by letting the momentum flux across an axial station be that 

through the nozzle exit. The bracketed term is a constant, r
1

, and we can set 

(12) 

This is the same relation (except for the presence of the term containing the nozzle 

and reference densities) as is obtained by Hinze for an incompressible flow. Thus 

a ~ 1, and u ~ (x-x )-1 . 
m o 

The form of equation (12) suggests that the universal function f(1l) may be the 

same for compressible and incompressible jets. Data from several sources have been 

6 analyzed to determine whether this congruency exists. It was found that for jets 

in which the Mach number was lowJ but where density variations were largeJ the 

profiles fell on the same curve when the reference density p
0 

was chosen to be Pe· 

Data from jets in which the initial Mach number was high gave curves which were 

narrower than the low-speed curve, but which could be brought into congruence with 

the low-speed curve by assuming that cr was a function of the initial Mach number. 

A choice which fit the data examined (which included only initially isoenergetic 

jets) quite well was cr ~ j1 + t(y-1)~·. This analysis indicated that the axial 

velocity decay of all jets in a stagnant ambient medium would be the same when 

plotted in an axial coordinate proportional to 

fp (x-x ) 
,_; ~ 0 

and all jets examined followed this behavior. (We might note that this behavior 

5 



was hypothesized by Thring and Newby7 in a study of turbulent flames.) 

To this point we have said nothing about the shape of the self-preserving 

functions f(~), s(~) and g(~) except that they can be made the same for all jets. 

In order to proceed further, we require an assumption relating the shear stress to 

other parameters. Such a relation is obtained by introducing the concept of an 

eddy viscosity, e , which is defined such that v 

T 
T 
xr (13) 

In many incompressible shear flows reasonable agreement of calculated and experi-

mental velocity profiles are obtained by assuming e is constant across any plane v 

of constant x in the flow. The congruence of incompressible and (transformed) 

compressible velocity profiles suggests that a similar assumption could be applied 

* to the compressible flow if the value of e for the transformed coordinates is used. v 

* The values of e and e may be related to each other by remembering that the momentum v v 

flow per unit ~ass (i.e., the force exerted by shear stresses on a unit mass) is the 

same in the two systems. Thus 

or 

e 

Now, since 

and so 

RTT* p
0 

RdRd:xd8 
xr 

* R2 2 ou dR 
Po v oR 

0 
or 

ou 
or ~ 

T 
rT P rdrd:xd8 xr (14) 

2 2 ou dr 
"v r p or (15) 

oR 0 
or or ' 

oR ou 
or oR ' 

(16) 
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This renresentation of the eddy viscosity was first suggested in print by Ting and 

Libby.
8 

* For actually calculating shear flows, we require an expression for e • Since 
v 

* ev is defined as 

* •v (17) 

T* * we may substitute the self-preserving function for ~ and u, and express "v as xr 

* •v u 
m 

(x-x0 ) g('fl) 

f I (11) 
(18) 

* In order for ev to be constant for a given value of x, the ratio g('fl)/f'('fl) must be 

a constant, K. If we identify u with u , the value of u on the centerline, and m c 

recognize that the transformed jet half-radius, R~, is simply~ (x-x0 ), we may 

* express ev as 

* •v (19) 

* This is the form generally used for e in incompressible jet flows in a stagnant v 

medium, with the exception of the 11M3ch nu..mber correction 11
, cr. 

* If it is assumed that ev is constant across a p.lane of constant x, then 

Equation (10) may be solved for f. The result is 

2 -2 

f('fl) ~ [l+~J (20) 

where This solution has been found to fit experimental radial velo~ity 

profiles in incompressible jets very 'ilell except in the outermost regions of the jet, 

where the calculated velocity drops off less rapidly than the measured velocity. 

* Again we introduce the self-preserving functions u1 ~ umf('fl), v 

*Note that R1 is proportional to a displacement thickness. 
2 
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and 'fT* 
xr The momentum equation becomes 

2 du u dt u 
u [_EI_ f - ...EI. _EI_ 'llf '] = _2!1__ [!('llg) '-sf'] e dx tm dx .em 1l 

The integral equation of momentum conservation is 

"' 
2j pu1 (u1+ue)rdr 

0 

"' 
2Jp

0
u1 (u1+ue)RdR 

0 

"' 
2p iu u Jf'lld'll o m m e 

0 

(21) 

(22) 

and the combination of (21) and (22) establishes that for self-preserving flow 

u ~ 
m 

(x+x ) -2/3 • 
0 

In this case we may express u1 as 

where we have again chosen p as the reference density. e 

If we introduce an eddy viscosity which is constant across a plane x 

then the equation for f may be solved 

f 

* Again, it is possible to express ev as 

to show 

~ 112 
e 

(const.) x (u Rl/cr) . 
c 2 

(23) 

constant, 

(24) 

(25) 

The Mach number correction ~actor, ~, seems to reflect a dependence on the 

partition of the total enthalpy of the jet into thermal and kinetic energy. In 

these terms, it might be more reasonable to speak of it as a Crocco number effect. 

The origin of this effect is not clear, but it may have to do with the production 

of sound by the turbulent jet. A recent review by Ribner9 quotes results derived 

by Phillips, 10 who found an expression for the acoustic efficiency of a mixing layer 

at very high Mach numbers which may be expressed as 

8 



acoustic energy flux 

pu3 

-3/2 i 12 
M --

u2i 
2 Here 2U is the velocity difference between the streams, M is the Mach number, v 

is the mean square component of the fluctuating velocity normal to the flow 

direction, ~ is a length scale of these fluctuations, and 1 is proportional to 

the thickness of the mixing zone. Ribner quotes experimental results on jet noise 

from rockets and aircraft engines which seem to indicate that the acoustic efficiency 

at high exhaust velocities is either independent of jet velocity or decreases slowly 

with increasing jet velocity. 

in order to maintain a constant acoustic efficiency (in the context of Phillips' 

asymptotic expression) as the Mach number is increased, the ratio of the relative 

turbulent intensity v'/U to the relative scale ~/1 must vary as ~/4 . The eddy 

' diffusivity of a turbulent medium, on the other hand, may be written as e ~ v ~, or 

as the product of a (rrns) fluctuating velocity and a scale, The asymptotic expression 

for a suggested 

studied is more 

by the jet 

like ~/4 . 

-1 data is e ~ M , and the variation of a in the regime 

This is compatible with Phillips' theory if v'/u remains 

more or less constant while 1/1 decreases with increasing Mach number. This implies 

that the eddies are reduced in size, perhaps by the compressive action of shock waves, 

as the Mach number is increased. The whole field of turbulence at high Mach numbers 

remains quite speculative, and considerably more theoretical and experimental study 

is needed before any firm conclusions can be drawn. In the meantime, we must make 

do with the skimpy amount of data available. (The existing meacurements of turbulence 

quantities in jets, such as those of Laurence, have only been made up toM= 0.8.) 

2. LIBBY'S THEORY 

Self-preserving flow is only found in the far field of jets when the ambient 
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medium is essentially stagnant, or when the difference between jet and ambient 
velocities is small. In order to develop a method which could be extended to other 
parts of the jet and which can be used to treat flows where u

1 is neither much 
greater than u nor nearly equal to u , Libby obtained a linearized solution to the e e 
equations of motion of a jet. The momentum equation, with the shear stress expressed 
by Equation (13), is 

(26) 

The procedures for obtaining the solution are slightly different when u is finite e and when u = 0, but the solution for finite u reduces to that for u 0 in the 
e 

e e limit when transformed to the physical plane. We shall consider first case B, u 
e finite, and then case A, u 

e 
0. These correspond to the asymptotic cases 

u
1 

<< ue and u
1 

>> ue in the self-preserving solutions. 

caseB(u ;t'o): e 

We apply the von Mises transformation to Equation (26), i.e., (x,r)~(x,w), 
where 

pur 
(27) 

and obtain the result 

(28) 

v1here 

(29) 
0 

At this point we introduce the eddy viscosity in the Howarth-Dorodnitsyn coordinates, 

10 



which may be shown to be 

Thus Equation (28) becomes 

dU 
dX 

* e 
v 

* 2 2 2 2 e = p r e /P R , v v 0 

2 2 
p r e /p p 

v' o e 
0 

* If we now assume that ev is independent of r (and thus of~), and make the 

assumption that the term in curly brackets is identically one, we find that 

dU 
dx 

(30) 

(31) 

(32) 

The assumption regarding the integral is essentially a linearization, for the 

bracketed term is really one only when u-u << u . We shall examine the effects of e e 

the linearization later. 

We now transform the axial coordinate according to 

where 

We then obtain the heat conduction equation, 

with the boundary conditions 

dU 
<ls 

ll 

(33) 

(34) 



u(O,'lf) = u e 

lim u(s,w) = 

w-
u 0 

e 

l2 The solution to this problem is given by Carslaw and Jaeger as 

u-u e 
u -u 

j e 

-w./4s * 
(1-e J ) P ( 1 ' 

J2s!wj' 
* Z R 13 where the function P (-,-)has been tabulated by Masters. cr cr 

(35) 

In order to transform to the physical plane, one must specify the density as a 

* function of 'lf and e and perhaps p as a function of x. 0 It was found from the 

similarity analysis that p
0 

= pe was a reasonable choice, since it allowed jets of 

varying density to be expressed by the same radial profiles. * The expression for e 
v ' 

may be obtained by considering that in the upstream portion of the jet, the behavior 

is similar to that of a two-dimensional mixing layer, and in the downstream portion 

the behavior is that o.f a fully developed axially symmetric jet flow. Therefore, in 

the upstream region 

and j_n the downstream region 

* "v 

c
1 x(u.-u )/cr , 

J e 

c2 Rl (u -u )/cr 
2 c e 

The transition point may be chosen to give good agreement with experiment. 

Therefore, we may divide the transformation 

s. u w 0 

X=J e*Jds' 
e 

0 v 

l2 

(36) 

(37) 



into two parts . 

or 

Above a certain value s ~ s , we have 
0 

X 

I 
c

1 
u. -u , 

s- -~~dx1 

- a ue . * j 
0 

*· c1 u.-u J J e 2 cr -u-­
e 

Beyond S
0

, we have 

X 

so 

au *·ds e J 

I 

c
2 

Rdu -u ) 
2 c e 

(39) 

This relation may either be evaluated directly, or we may develop a somewhat 

more general relation which will allow changing c2 and a for a given computation 

more easily. By introducing the variableS~ 2s/*j' we can write (39) as 

Recognizing that 

and 

(or, if n *N j' 

X = X 
0 

u -u 
c e 

R~ 

R, ~ *j 2 

au *·dS e J 

I 

c2 R,(u -u ) 
2 c e 

(1-e- 1/ 28
) (u.-u) 

J e 

1h " u 2 

[f'2 ~ *' df] u 
0 

~(s) 
cf 2 :e ll 1 dn 1 l~) 

0 
13 

(40) 

' 



we may write (40) as 

Now, from (35), 

thus 

s 

0 

Since ~. 
J 

where F 

s 

s 
0 

X 

s 

0 

cr[u /(u.-u )] dS
1 

e J e 

dn I)~ I 

_.:cs * u ~ u + (u.-u ) (1-e 2 ) P (S,n); e J e 

X 
0 

.:h 
cr[u /(u.-u )] 2 dS 1 

e . J e 

crr. + __ J 
2c

2 

nl (s') 
2 

I ) -1 I + u (u.-u ] 2n e J e 

u 

u ~u ) 
j e 

-i 

dn l]t 

l I 2 
(1-e -zS ) 2n' dn' 

dS 1 
• 

' I 
(1-e -:2S ) p* 

0 

u 
e +--

u.-u 
J e 

(41) 

(42) 

(43) 

The evaluation of the integral becomes somewhat easier far from the origin, where 
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and 

Then 

F 

u 

8 

2 
(.J:_) 
28

1 

l _ -is 1 
e ~ 28 

2 
*( ) -n /28 p 8,n ""e 

2n' dn 
1 

0 

+ 
u 

e 
u -u 

j e 

-i 

d8
1 

' 
(44) 

If we let k e 
u -u 

j e 
, the inner integral may be evaluated analytically to give 

8 

F 

l 
2k +- -~ 

[ ----
1 {£n ~8 '}] d8

1 
• 

2k8
1 

k + 
(45) 

The radial transform to the physical plane is given as 

(46) 
0 

Because in an afterburning rocket exhaust the density is not a simple function of 

the velocity, this transform requires a greater knowledge of the details of the flow 

field. We shall discuss the requirements in a later section. 

Case A ( u = 0): 
e 

In this case we express the von Mises transform as 

pur 

15 

(47) 



and the momentum equation becomes 

l 0 22 2 2 
-,1, 0,1, [ (eP r ujp .u.~ ) 
uj, ' . J J 

(48) 

* With the same assumptions about the constancy of e and the reference density p , v 0 

and the same sort of linearization, (48) becomes 

By introducing a new axial coordinate 

X -1 

s = J Cj) 
Pe 

0 

au 
dfJ 

the heat conduction equation is obtained as before, 

In this case the solution is 

-r./4s * 
~ = (1-e J ) P 
uj 

(49) 

(50) 

(51) 

~/r. 
J ) 

J2sjr.' 
J 

(52) 

To transform the solution to the physical plane we again assume that in the 

upstream region of the jet 

and downstream 

* "v c
2 

R;l, u /cr . 
2 c 

Then in the upstream region we obtain the solution 
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p j 2s cr ~ 
[---] 

p r. c
1 e J ' 

which may be recognized as the limiting case of Equation (38) as u ~ 0. e 

In the downstream region we have 

s I 

+J 
P. cru.r.ds 

X X 2 J J = Rlu 0 

so 
pe c2 

2 c 

Proceeding as before, we find that 

X = X 
0 

or. 
+ __ J 

2c
2 

as' 

[ J
nl (s) l ~ I 2 I I 

(l-e -28 ) 2~ dn 

P (s ,n) 

It will be noted that (55) is the limiting case of (43) when u ~ 0. 
e 

X X 
0 

crr. 
+ __ J 

2c2 
F(s ,s,o) . 

0 

Far from the origin, (56) may be shown to become 

X ::::: X 
0 

crr. 
+ __ J 

2c2 

Thus, 

(53) 

(54) 

(55) 

(56) 

(57) 

* which may be derived from (56) by introducing the limiting form of P or from (45) 

by taking the limit as k ~ 0. The radial transform is performed as before. 

3. DESCRIPTION OF FLOW CHEMISTRY 

In a reacting turbulent flowj a complete description of the progress of chemical 

reactions would be very complex. The rate expressions describing mean reaction 
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velocities become (like other expressions) averages over fluctuating quantities, and 

the proper method of taking this average so as to produ~e correct results has not 

been discovered. We therefore have essentially three alternatives: the reaction 

effects may be neglected; the reactions may be accounted for by using finite-rate 

expressions which are adjusted to give good agreement with experimental resulfs; or 

the reactions may be assumed to proceed very rapidly so that a condition of lc·a 1 

chemical equilibrium exists. The first alternative cannot account for the larg<' 

energy release which occurs during afterburning of the exhaust gases. The second 

requires extensive experimental data covering many different conditions in order 

that the "phenomenological" expressions may be checked. The third has drawbacks of 

its own, which will be discussed below, but still seems the most reasonable procedure 

for a rocket exhaust at low altitude. It is this approach that is used here. 

Even if reactions are very fast, it is strictly improper to employ mean-flow 

variables in the equilibrium expressions unless all the fluctuations about the mean 

values are small. However, one may hypothesize that some distance downstream from 

the primary reaction zone the heat released by combustion of a given element of fluid 

will have been spread by diffusive effects to neighboring elements, so that the mean 

density in the region considered is approximately that given by assuming that the 

fluid is locally "well-stirred". We therefore should expect that the local equil-

ibrium solution described by conventional thermodynamic expressions in tenns of mean 

flow variables represents an approximation which is increasingly good as one moves 

downstream, away from the region where exhaust gases and the atmosphere first meet. 

We have treated the chemistry of the reacting plume after the "adiabatic flame 

14 temperature" approach proposed by Boynton and Neu. Here the density, composition, 

velocity, and temperature may be expressed as functions of one variable, the mass 

fraction of exhaust gases in the local flow. The computation assumes local 

conservation of momentum, mass, and total enthalpy (including heats of formation) on 
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mixing. This represents a solution of the set of equations (2) if the fluxes of 

mass and heat and the shear stresses are represented by equations of the form 

T 
J . r,l 

T 
qr i 

' 

T 
T 
x,r 

oc. 
l 

or 

aT 
peH or i 

i 

au I 
Pev or j 

(78) 

and if in addition eM~ eH ~ ev everywhere in the flow field. Under these conditions, 

if the local mass fraction of fluid which originally came from the exhaust jet is cj' 

then 

2 
h + f u 

(79) 

The method of Boynton and Neu is to assume that u. and h. are determined by an 
J J 

isentropic expansion of the exhaust gases to ambient pressure. (This is not an 

essential feature of the computation~ and a non-isentropic expansion - for example~ 

by Thomson's method -may be employed if the nozzle exit and free stream pressures 

are greatly different.) For a given value of c., the values of u and hare computed 
J 

from (79). From the thermodynamic properties of the various chemical constituents, 

the temperature of the mixture is found by a straightforward iterative procedure, At 

this point~ no chemical reaction is assumed. 

The effects of chemical reactions are considered in the follmling manner. A 

trial temperature is chosen~ and from this temperature and the known pressure and 

atomic composition of the mixture the mole numbers (per mole of exhaust fluid) are 

calculated by the technique of free energy minimization. 15 This process is then 
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iterated until the static enthalpy of the burned gas at the trial temperature is 

equal to the value of h calculated from (79). It is assumed that the energy release 

does not accelerate the flow, so that the velocity is the same regardless of whether 

the fluid has burned. This assumption is compatible with the coordinate transfor-

mations (l) and (27) in the above analysis of the momentum equation, where it is 

assumed that the only effect of a density change is a squeezing or stretching of 'Ale 

radial coordinate. Since 

u-u e 
u -u 

j e ' (80) 

this analysis can be combined directly with Libby's jet flow theory to provide a 

map of velocity, temperature, and composition throughout the flow field. 

4. THE COMPUTER PROGRAMS "SHARP" AND "SHEAR" 

The analysis presented in the preceding sections has been embodied in two 

computer programs. The first program, "SHARP", computes the detailed composition 

and temperature at a given mixing ratio between two streams whose properties are 

knmm, using the techniques of the previous section. The second program, "SHEAR", 

uses the output data of "SHARP" to compute the flow field by an integral transformation 

of Libby's solution to the physical plane. 

The program "SHARP" is built up of a number of subroutines, some of which were 

develoned for earlier programs ("Polyphase Chemical Systems, 11 which is a thermo-

chemical calculation of equilibrium temperature and properties, and nPEEP, 11 a 

propellant performance program) and some of which are specific to the afterburning 

problem. As a result, much of the input information required by SHARP is that used 

by PEEP. The following is a listing of the input needed for SHARP and prescriptions 

for obtaining it. 

Card No. l (Field width 3): * NDS - number of chemical species in the mixed flow; 

* A condensed phase is a different· species for this purpose. 
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NT - number of temperatures in the thermodynamic property tables; NALT - the number 

of different altitudes to be considered; NCAIR - the number of atmospheric constituents 

(usually two, N2 and 0
2 ). One card. 

Card Group No.2 (Field width 14): The thermodynamic property tables, one set 

of NT cards per species. These contain: T -temperature, °K; S - entropy (third 

law value) in cal/gm. mole-°K; H - enthalpy, defined as the heat of formation at 

zero °K (heats of formation of the elements in their normally occurring states -

e.g., H2(g), C(s) -are taken as zero) plus the heat required to raise the species 

to temperature T, in cal/gm. mole; CP - heat capacity in cal/gm. mole-°K. Additional 

information, such as species identity, may be included at the right-hand side of the 

card. Cards for most species of general interest are available in the Space Science 

Laboratory. NT x NDS cards. 

Card Group No. 3 (Field width 14): Atmospheric and trajectory properties, two 

cards for each altitude. First card contains: ALT -altitude; PALT- atmospheric 

pressure in atm.; VALT- missile velocity in ft/sec.; TALT- atmospheric temperature 

in °K, Second card contains mole fractions of atmospheric constituents, NCAIR 

entries. Atmospheric data is generally obtained from standard tables, velocity 

data from a trajectory. 2 x NALT cards. 

Card Group No.4 (Field width 3): IMR- number of mass ratios of air/jet gases 

to be considered; NDA- number of different atoms, or of some other ultimate 

components of the system; NDP - number of different phases in the system. One card. 

Card Group No. 5 (Field width 14): TINC - lowest temperature in thermodynamic 

nrouerty tables; TOE - initial guess to temperature of expanded gases; TOB - initial 

guess to temperature of burned gases; HO - enthaloy of the system at some reference 

state (generally chamber conditions) in cal/gm. (This may be obtained by taking the 

enthalpy of one mole of the rocket's fuel in cal/gm. mole, adding to it the enthalpy 

of as many moles of oxidizer as are required by the mixture ratio at which the rocket 

21 



• 

is operated, and dividing by the mass of the fuel/oxidizer system in atomic weight 
units.); VO- velocity of the system at some reference state in ft/sec. (zero if 
chamber or reservoir conditions are chosen). One card. 

Card Group No.6 (Field width 14): FMR the mass ratios of air to jet gas to 
be considered. IMR numbers, placed 5/card. 

Card Group No. 7 (Field width 14): FMJ- the atomic weights of the different 
atoms in the system. NOA numbers placed 5/card. 

Card Group No.8 (Field width 3): IPHASE- the identification of the phase in 
which a particular species belongs (the gas phase is always phase no. l). NOS 
number, 20/card. 

Card Group No. 9 (Field width 6): V - originally, molar volumes of condensed 
species; now replaced by zeros, NOS number, 10/card. 

Card Group No. 10 (Field width 6): A- number of atoms of the jth kind in the 
ith molecule. (For example, aH,H20 = 2; a0,H20 = 1, etc.) NOS entries, 10/card, 
for each atom; start a new card when starting a new atom. NOA groups of NOS entries 
total. 

Card Group No. ll (Field width 14): ZIN- composition of jet gas in moles/ 
mole of "fuel". Mole numbers of aitmospheric constituents not present in the initial 
jet, or of species produced by the combustion process, must not be zero, but are set 
equal to a very small number. NOS numbers, 5/card. 

Card Group No. 12 (Field width 14): FM- molecular weights of species. NOS 
numbers, 5/card. 

Card Group No. 13 (Field width 6): VAR- identification of the species (N2 , H2' 
etc.). NOS entries, 12/card. 

Card Group No. 14 (May use whole card): NAME- identification of the run. One 
card. 

Card Group No. 15 (Field width 14): TO- temperature (in °K) from which 
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r 
isentropic exnansion to ambient pressure begins; PO - pressure (in atm) from which 

expansion begins. These may be chosen more or less arbitrarily (i.e., rocket 

chamber, throat, or exit conditions), but must be consistent with each other. One 

card. 

Wherever entries occur which are associated with specific species, or specific 

atoms, the entries must always be made in the same order. 

The output from SHARP consists of the following quantities: Altitude, 

atmospheric pressure PA and missile velocity, VA; temperature, TE; and veloc5ty, VE 

of the jet gases expanded to ambient pressure; mixing ratio, R; temperatures cf the 

unreacted (TJ) and equilibrium (TB) jet/air mixture and mixture velocity VJ; mole 

numbers of the species on mixing and after reaction. This information is repeated 

for each mixing ratio and each altitude. 

The program 11SHEAR 11 is the second version of a jet mixing program. An earli.er 

version, developed for an application to a launch phase countermeasures study, 

contained a logical error which affected the axial coordinate. In addition, the 

program was quite inefficient because a constant step size was used. In the present 

version the step size of both the radial and axial transformation is controlled by 

means of a check against the properties of the solution in the (s,~) plane and an 

interval specified by the user. This results in a variable spacing in the output. 

The input required for SHEAR consists of the following information: 

Card Group No. l (Format 2Il2, 4El2.4, lE8.2): NOS -number of species; NC -

number of jet/air ratios tabulated; TEST - the value of the jet mass fraction at 

which the transition between the 11upstream" and the 11downstream" eddy viscosity 

model is made; TOL - the fractional amount by which the centerline mass fraction is 

diminished to define the axial step size 6s; PRINT - a number which is set negative 

for no printout of input, zero for printout of input except for P* tables, and 

positive for printout of all input; ENDR - the air mass fraction at which the radial 

23 



• 
transformation is terminated; ENDX - the centerline jet mass fraction at which the 

axial transformation is terminated. One card. 

Card Group No.2 (Field width 12): R - value of jet mass fraction; T. - value i l 

of temperature for the particular value of R; Zij - values of species mole numbers 

(in any units, moles/mole of mixture, moles/mole of fuel, etc.) for the particular 

value of R, in consistent order. 6 numbers/card until all NDS species are accounted 

for, therefore N cards/value of R. Start a new card for the next value of I.; NC x 

N cards total. 

Card Group No. 3 (Field width 12): M- molecular weights of the species. 

NDS entries, 6/card. 

Card Group No.4 (Field width 12): P- ambient pressure; TP- temperature of 

jet; TE - temperature of air or free stream; A - radius of jet; UP - jet velocity; 

UE - air velocity; SIGMA - Mach number correction to eddy viscosity; Cl - upstream 

region eddy viscosity constant; C2 - downstream region eddy viscosity constant. Two 

cards. Any absolute units may be used for pressure and temperature, and any units 

for velocity and jet radius. 

The SHEAR program also requires as input the values of the P* function. A 
l tabulation versus a ~ and ~ ~ 

J2s/~ j, 
(l-~/~j)/J2s/~j'has been prepared from the data 

given by Masters and stored on tape 5274. This tape is available in the Digital 

Computer laboratory. 

The output of SHEAR consists of the following items: N, the index of the radial 

step (N~l is always the centerline); X, the axial coordinate in the same units used 

for A; R, the radial coordinate in the same units used for A; T, the local temperature; 

U, the local velocity; and the local composition in mole fractions. 

SHEAR also produces punched card output consisting of X, R, T, U, and the mole 

fractions of the first four species. This information is presented in a 8El0.4 

format. These cards may be used as input to any calculations to be made using the 
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flow field data. One computer run produces about 700 cards, depending on the 

tolerance used. 

The operating time of these programs is apparently ~uite fast. SHARP load 

times average 5 millihours on the 7094; execution time for l2 mixing ratios of an 

RP-1 jet with the atmosphere at one altitude is 7 millihours. The corresponding 

SHEAR run had an execution time of 32 millihours. It is therefore possible to solve 

a complete far-field exhaust flow problem in less than 50 millihours of machine time 

once the input data are known. 

The analysis of the turbulent mixing problem is e~ually applicable to the 

turbulent axially symmetric wake. In the programming of SHEAR, the eddy viscosity 

was set proportional to the absolute magnitude of the velocity difference u-u , so e 
that SHEAR may be used for a wake problem where u. may represent, for example, 

J 
conditions at the "neck rr. 

5. SUMMARY 

At this point it seems desirable to summarize the foregoing analysis and 

discussion. We are interested in describing the flow field of a rocket exhaust jet 

at low and moderate altitudes. The most important processes governing the flow are 

the turbulent mixing of the exhaust gases with the atmosphere and the combustion of 

the fuel-rich exhaust. The method of analysis follows closely the analysis of Libby 

developed for the supersonic combustion of hydrogen. The value of the eddy viscosity 

appropriate to a jet flow is derived from an analysis of the conditions under which 

compressible jets exhibit self-preserving behavior. It is found that the spreading 

coefficient is independent of density when expressed in the proper coordinate system, 

but that an effect of Mach or Crocco number appears to be present. (It is shown that 

this effect can be related to the loss of turbulence energy as radiated sound.) A 

consistent development of Libby's theory is given, allowing smooth transitions between 
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the case of zero and finite free-stream velocity. It is shown that the development 

of the turbulent jet depends on the density ratio p./P , the velocity defect ratio 
J e 

(u.-u )/u , and the eddy viscosity constants c1 , c2 , and a. The effects of reaction J e e 

between the exhaust and the atmosphere are accounted for by assuming that the flow is 

locally well-stirred and in chemical equilibrium. Effective turbulent Prandtl and 

Schmidt numbers are assumed to be identically one. Under these assumptions the 

chemical problem may be decoupled from the hydrodynamical problem. 

Two computer programs have been prepared which, when used together, solve the 

afterburning rocket exhaust flow problem for given initial conditions. Instructions 

are given for operating these programs. In the first appendix, the results of Libby's 

linearized theory are compared in detail with well-known self-preserving solutions 

and shown to be nearly equivalent. Values of the eddy viscosity constants c1 and c
2 

are derived from carefully obtained experimental data. In the second appendix, a 

comparison is made with the results of constant-density jet flow experiments and with 

rocket exhaust experiments conducted in a wind tunnel, and the agreement is shown to 

be satisfactory. 
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APPENDIX l 

COMPARISON OF SELF-PRESERVING AND LINEARIZED THEORY 

AND DETERMINATION OF c2 AND c1 

The effects of the linearization on Libby's solution can be examined by 

comparing the predicted axial and radial velocity profiles with those developed in 

self-preserving (asymptotic) jet flows. Let us first consider Case A, u = 0. 
e 

Along the axis, 

u 
c 

-r./4s 
uj (l-e J ) 

or, as ; becomes very large, 

Now from (57), we have x 

whence 

err. 
= xl + _J 2c

2 

l 
p 2 

c2 (~) 
cr Pj 

(x-x
1

) , 

(A-l) 

(A-2) 

(A-3) 

(A-4) 

.l. 
This is very nearly (12) for f(~) l; it is (12) exactly if Ir 4c2. From (20), 

we have 
00 -4 
. ~2 

I 1 = j 2[1 + fu] ~d~ 
0 

8 Ci 
= 3" 

A-l 
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Then for exact correspondence between (61) and (12), we must have c
2 

= ~· 
The radial solution far downstream may be expressed (in the asymptotic limit 

* of the P function) as 

or, with the use of (61), as 

u 
-- = e u 

c 

u 
u 

c ' 

2 c2 p e .l,_ 
-o/ /4 --(--) 2 (x-x )r. a p. 1 J 

J 

(A-5) 

(A-6) 

The transformed (or equivalent incompressible) radial coordinate is expressed as 

0 

p .u. ---L,l,f 
p u 
e 

e 

~ 
pe 2 

(--) (x-x )r. 
p j 1 J 

With a little manipulation, (A-7) becomes 

which may be rearranged to give 

2 16c2 
-2-

(J 

u 
u 

c 
[1 + 

where ~ = crR/(x-x1 ). In terms of a, (65) may be written 

[1 + 

A-2 

(A-7) 

(A-8) 

(A-9) 



The radial profiles obtained from (20) and from (A-9) are shown as functions 

of ~/2vG/in Figure 1. It is seen that the theory of Libby predicts profiles which 

are narrower than the self-preserving profiles near the center of the jet, and wider 

near the edge. Therefore, we should expect that properties of the flow which are 

very sensitive to the radial profiles, and particularly to the profiles at the edge 

of the jet, are somewhat inaccurately described by the linearized theory when 

u = 0. When u is finite, and particularly when u >> u.-u , Libby's theory should e e e J e 
be as accurate as the similar solutionJ since here the similar solution is likewise 

linearized. 

Here we have 

X 

' u. ~ 

(-J-) 
u -u 

j e 

If k >> l while 8
1 

<< 1, then (A-10) becomes 

X 

crr. 
x2 + _J 2c
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u. t 
(u ~u ) 

j e 

s 

2kS
1 

dS
1 

.en{2k + ts '} 
k + ts' 

(A-10) 

(A-ll) 

where the lower limit to the integral has been incorporated in x2 . Therefore 

and 

u -u 
~"'~ u .-u 

J e 

(u.-u )2/3 
J e 

(u.-u )1/3 
J e 

(u .-u )l/3 
J e 

In this case, (A-13) reduces to the self-preserving expression (23) if 

A-3 

(A-12) 

(A-13) 



(A-14) 

Now consider the radial profile. In this case, in the far downstream region 

and 

u-u e 
u -u c e 

(A-15) 

(A-16) 

Upon substituting (A-15) into (A-16) and integrating, we obtain, after a bit of 
manipulation, 

Therefore 

u-u 
e 

u -u 
c e 

and substituting for s from (A-12), we find 

f('ll) 

where we have employed the relations 

p.u. ~ 
l)rj ~ rj VuJ) 

e e 
A-4 

(A-17) 

(A-18) 

(A-19) 



and 

Then we have from (A-19) and the definition of I2' 

00 (u. -u )2/3u _2/3 l/6 
3c2 

2/3 

J 
p 

~ 2 f(11)11d11 2 J e J (-"-) (2/ P,n2) 4/3 pj u 
0 e 

(A-20) 

which is in agreement with the requirement (A-14) for r
2 

if Libby's solution and the 

similar solution are to give the same axial decay. Note also that (A-19) is of the 

same form as (24), and we have therefore defined the constant a in terms of known 

quantities. 

Since we know the relation that must exist between c2 and a, the constant 

appearing in (20), in order that Libby's analysis and the similarity analysis give 

the same axial velocity decay, we may determine c2 from the many experiments which 

have been performed on fully developed incompressible jets. In Hinze's book, the 

value of a 1o1as given as 0 .00196, from which 

This value of c2 assures the proper axial decay far downstream. It should be noted 

that this number is quite close to the factor relating e, u, and the displacement 

16 thickness in the outer regions of a turbulent boundary layer. 

In the present case we have two slightly different values of Rt in the self­

preserving solution and in the linearized solution. Letting y = ~jJ4c;, we may 

solve (20) and (A-9) for Yt· The results are 



for the self-preserving expression (20), and 

for the linearized expression (A-9). Since 

where x
1 

is the virtual origin of the jet, and since x is related to S 

(57), as 

we have 

R. 
~ _J_ s 

2c2 ' 

Rl ~ y~2l S J6'. 
2 

* 

2s/~. by 
J 

In order to give the correct value of ev at a given axial station, the value of Rl 
2 

derived from Libby's solution should be multiplied by 0.910/0.816, or 1.114. 

Therefore the effective value of c2 is 

c2 ~ 0.0197 

for the case of a stagnant ambient medium. 

As an auproximate interpolation formula between the two cases of u 
e 

(u.-u ) « ue' we may use 
J e 

-k 
c2 ~ 0.0177 + 0.0020 e , 

0 and 

where k = u /(u.-u ) and is zero when ue = 0 and infinite when u.-u ~o. Use of this e J e J e 

formula will give the proper velocity decay. Since the apparent turbulent Schmidt 

number found in incompressible flow is approximately 0.7, c2 (and also c
1

) should be 

A-6 



multiplied by this value if composition decay is of interest. No really valid 

approximation exists for temperature decay in a system where viscous dissipation 

effects are large, but it might be expected to decay more like composition than 

velocity. 

The behavior in the upstream portion of the jet is determined by the choice of 

* c1 and the value of s at which the transition is made between the two models for ev· 

The value of c1 can be determined from experimental studies of mixing layer flows; 

here the solution for an incompressible flow is given by Schlichting as17 

where S 
c u.-u -i 

=_
2
l (l J e) 

a u.+u 
J e 

u (~ ~)} ' (A-21) 

is defined as in (36). 

The solution obtained by Libby, in the limit that ~~ becomes 
J 

very small, is 

given by 

u u + i (u.-u) {1-erf[ ~~~j - ~} • 
e J e J2 J2 r;,Jw. 

J 

(A-22) 

Evaluating the incompressible radius R, we find that when the linearization is valid 

R""~· Defining R. as ~.(u /u.) or as r.P./P, we may rewrite (A-22) as J J e J J J e 

u u + ~ e 

u 
e R-R 

(uj-ue){l-erf[ juuj/J2 J2s/~j]} 
e 

RJ. u. 
J 

Now we recognize that from (38) 

Substituting this expression in (A-23), and assuming u /u. = 1, we obtain e J 
A-7 

(A-23) 

(A-24) 



u u + t e { {
R-R. J c1 uj-u ']} (u.-u ) 1-er __ J/ 2- ___ e 

J e x cr uj , 

and by identifying y with (R-Rj), noting that uj 

Schlichting's solution, we find 

l 
~2 

u = u + ;t (u.-u ) {1 - erf(Sl)} e J e x 

This is exactly equivalent to (A-21), as may be seen by recognizing that 

u = ~ [(u.+u )-(u.-u )] . e J e J e 

(A-25) 

(A-26) 

* Since the solutions of Libby and Schlichting can here be made exactly equivalent, 
the value of c

1 obtained from fitting mixing-layer experiments to the Schlichting 
solution can be used in transforming Libby's solution to the physical plane. 

Schlichting gives a value of S = 13.5 as the best fit to experimental data; Vasiliu 
selected a best value of 12.0. 

so that 

These values are for u = 0 at low jet Mach numbers, e 

l 
4S2 = 

0.00174 . 

The value of S can be determined either by numerical experiments, or by choosing 0 

* * it so that ev as given by the upstream expression is equal to ev as given by the 
downstream expression. 

* Schlichting's solution is also linearized, since it represents the first two terms 
of a power series in (u.-u )/(u.+u ). J e J e 
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APPEND:OC 2 

COMPARISON WrrH EXPERIMENT 

The analysis given in this report has been checked against experimental data 

presented by Corrsin and Uberoi,
18 

by Forstall and Shapiro,
19 and in the final 

report of the Ballistic Missile Plume Wind-Tunnel Research Program.
20 

The comparison 

with Corrsin and Uberoi is shown in Figure 2; except for a slight axial displacement, 

the agreement is excellent. (This result should have been expected, since the value 

of c2 taken from the preceding section is taken from this experimental work.) The 

data given by Forstall and Shapiro show considerable experimental scatter. The 

results of a comparison with data from two different velocity ratios u./u are shown 
J e 

in Figures 3 and 4. The agreement appears to be fair, considering the scatter in the 

data. 

Comparisons with data from actual rocket firings are difficult to obtain, since 

only a few data exist. The only source of data at altitude seems to be the wind-

tunnel experiment performed by Convair in the AEDC facility. For a comparison here, 

we have chosen the results of the composition samplings. A comparison with the axial 

decay data at sea level may be found by plotting the reciprocal of the mass fraction 

of jet fluid versus axial distance. The self-preserving theory, and that of Libby 

in its asymptotic form, predict a linear relationship which should be the same for 

all jets when plotted versus an axial coordinate in units of equivalent jet radii, 

where 

The results of such a plot are shown in Figure 5, where a linear relation is shown 

A-10 



to exist. We also show the reciprocal velocity decay of Corrsin and Uberoi, and the 
results of a "SHEAR II" run with the value of c2 multiplied by 0.65, which is close 
to the value of the turbulent Schmidt number found in constant-density jets. 3 The 
agreement in slope between the computer calculation and the experiment is excellent. 
The experimental results show an apparent offset of the virtual origin of the flow. 
(This offset also appears in the runs at altitude, and may reflect an error in locating 
the sampling probe.) 

Radial profiles calculated and measured are shown in Figure 6, where we have 

compared radial "slices" with nearly the same axial mass fraction for the experiment 
and the calculation. The agreement is again good, with the observed profiles 

slightly wider than the calculated ones because of the Schmidt number effect. 

A comparison at altitude, where the free stream velocity is appreciable, has 

been made using the experimental results for the runs at 50,000 ft., with an external 

Mach number of 1.75. These data are from two different engines, one with an area 

ratio of 25/l and the other with an area of 8/l, but with throat area, chamber 

pressure, and mixture ratio equal. The balanced jet assumption should apply to these 
data, and indeed the axial decay profiles shown in Figure 7 follow the same curve 

within the experimental errors. This decay curve can be fitted by the analysis, 

where CY is based on the velocity difference Mach number defined by the inner :stream 
properties and an effective Schmidt number of 0.65 is employed. Since the apparent 
offset from the origin is found in these data also, we show only the region of the 
jet where the data were obtained. This is in the region of the largest volume of 

hot gas in an afterburning rocket exhaust, and the calculation is therefore suitable 
for use in a radiance prediction. The agreement of calculated and experimental 

radial profiles is shown in Figure 8, and appears to be as good as could be expected 
considering the scatter of the data. 
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